Skip to main content

Is this the end of complementarity?

Image © EPFL 2015
We have a report from the Ecole Polytechnique Federale de Lausanne (EPFL) of 'a photograph of light as both a particle and a wave.' HT to Ian Bald for pointing this out - the paper dates back to March, but I didn't spot it at the time.

It's interesting to dig in a bit and see a) is this true and b) is it the end of Bohr's assertion as part of his concept of complementarity that light could act like a wave or a particle but never both at the same time?

The experiment is complex enough that it's a little fuzzy when it comes to the interpretation. What the experimenters did was reported by the EPFL's press people as follows. The experimenters fired a laser at a metallic nanowire. Some of the energy from the photons in the light stimulated electrons in the wire, which meant that 'light' travelled along the wire in two directions. When these waves met they formed a standing wave which generated emitted light. They then shot electrons at the wire which interacted with the emitted light in a quantum fashion, slowing down or speeding up and producing the rather pretty image.

The argument in the press release is that this simultaneously demonstrates the wave and particle nature of the light - the wave in the standing wave and the particle aspect is in the interaction with the incoming electrons that produces the image.

This is a really interesting experiment. As Fabrizio Carbone, the leader of the EPFL team says, 'This experiment demonstrates that, for the first time ever, we can film quantum mechanics – and its paradoxical nature – directly. Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing.' However I'm a bit hesitant to say that we are simultaneously observing wave and particle behaviour in the same bit of light.

Unless I'm misunderstanding what's going on, we have waves in the nanowire, which strictly speaking are plasmonic, i.e. quantised vibrations rather than themselves conventional electromagnetic waves. These waves are causing electrons in the wire to accelerate, generating photons which are emitted and then interact with the incoming detector photons. So the wave-like process is generating the photons. But they are totally different entities. Of itself this kind of mix isn't uncommon - wave-like behaviour in a radio aerial generates the photons of the emitted radio - but being able to see the impact of both in the same image is. So complementarity is safe.

Whatever the correct interpretation, we must not fall into the trap of confusing models with reality. Light is not a wave, nor is it a particle (nor is it a fluctuation in a quantum field) - these are models that help us get a grasp of its behaviour, but in the end light is light, where waves, particles and fields are all models based on our experience of the macro world. However, it's certainly interesting stuff! You can read the full paper here.

Comments

Popular posts from this blog

Why I hate opera

If I'm honest, the title of this post is an exaggeration to make a point. I don't really hate opera. There are a couple of operas - notably Monteverdi's Incoranazione di Poppea and Purcell's Dido & Aeneas - that I quite like. But what I do find truly sickening is the reverence with which opera is treated, as if it were some particularly great art form. Nowhere was this more obvious than in ITV's 2010 gut-wrenchingly awful series Pop Star to Opera Star , where the likes of Alan Tichmarsh treated the real opera singers as if they were fragile pieces on Antiques Roadshow, and the music as if it were a gift of the gods. In my opinion - and I know not everyone agrees - opera is: Mediocre music Melodramatic plots Amateurishly hammy acting A forced and unpleasant singing style Ridiculously over-supported by public funds I won't even bother to go into any detail on the plots and the acting - this is just self-evident. But the other aspects need some exp...

Murder by Candlelight - Ed. Cecily Gayford ***

Nothing seems to suit Christmas reading better than either ghost stories or Christmas-set novels. For some this means a fluffy romance in the snow, but for those of us with darker preferences, it's hard to beat a good Christmas murder. An annual event for me over the last few years has been getting the excellent series of classic murderous Christmas short stories pulled together by Cecily Gayford, starting with the 2016 Murder under the Christmas Tree . This featured seasonal output from the likes of Margery Allingham, Arthur Conan Doyle, Ellis Peters and Dorothy L. Sayers, laced with a few more modern authors such as Ian Rankin and Val McDermid, in some shiny Christmassy twisty tales. I actually thought while purchasing this year's addition 'Surely she is going to run out of classic stories soon' - and sadly, to a degree, Gayford has. The first half of Murder by Candlelight is up to the usual standard with some good seasonal tales from the likes of Catherine Aird, Car...

Is 5x3 the same as 3x5?

The Internet has gone mildly bonkers over a child in America who was marked down in a test because when asked to work out 5x3 by repeated addition he/she used 5+5+5 instead of 3+3+3+3+3. Those who support the teacher say that 5x3 means 'five lots of 3' where the complainants say that 'times' is commutative (reversible) so the distinction is meaningless as 5x3 and 3x5 are indistinguishable. It's certainly true that not all mathematical operations are commutative. I think we are all comfortable that 5-3 is not the same as 3-5.  However. This not true of multiplication (of numbers). And so if there is to be any distinction, it has to be in the use of English to interpret the 'x' sign. Unfortunately, even here there is no logical way of coming up with a definitive answer. I suspect most primary school teachers would expands 'times' as 'lots of' as mentioned above. So we get 5 x 3 as '5 lots of 3'. Unfortunately that only wor...