Skip to main content

Nature's Nanotech #7 - Behold the Peacock

The last in the Nature's Nanotech series



There is something stunning about the colours of a peacock feather. It’s not just a simple matter of the sort of coloured pigments an artist mixes up on a palette. The colours in the feathers almost glow in their iridescence, changing subtly with angle to catch the eye. To produce this effect, the feather contains a natural nanotechnology that has the potential to transform optics when this remarkable approach is adapted for use in human technology.

Both the iridescence of that peacock’s tail and the swirly, glittering appearance of the semi-precious stone opal are caused by forms of photonic lattices. These are physical structures at the nano level that act on light in a way that is reminiscent of electronics, like the semiconductors that act to switch and control electrons, giving unparalleled manipulation of photons.

The colours of the peacock feather bear no resemblance to those of a pigment. In blue paint, for example, the pigment is a material that tends to absorb most of the spectrum of white light but re-emits primarily blue, so we see anything painted with the pigment as being blue. In the peacock feathers it’s the internal structure of the feather (or to be precise the tiny ‘barbules’ on the feather) that produce the hue.

The colouration is primarily due to internal reflections off the repeated structure of the barbule, similar to the way the lattice arrangement of a crystal can produce enhanced reflection. What happens is that photons reflected from a deeper layer are in phase with those from an outer layer, reinforcing the particular colours of light (or energies of photons) that fit best with the lattice spacing. This is a photonic lattice. These effects depend on the angle at which the light reflects, giving the typical ‘shimmer’ of iridescence.

The practical applications of artificially created photonic crystals can do much more than produce a pretty effect and striking colours. Because a photonic lattice acts on light as semiconductors do on electrons, they are essential components if we are ever to build optical computers.

These theoretical machines would use photons to represent bits, rather than the electrical impulses we currently employ in a conventional computer. This could vastly increase the computing power. Because photons don’t interact with each other, many more can be crammed into a tiny space. What’s more, one of the biggest restrictions in current computer architecture is the complex spaghetti of links joining together different parts of the structure. With photons, those links can flow through each other in a basket of light – unlike wires and circuits, photons can pass through each other without interacting, allowing more complex and faster architectures. Equally, optical switching – and in the end, a computer is just a huge array of switches – could be much faster than the electronic equivalent.

There are significant technical problems to be overcome, but the potential is great. Photonic crystals are already used in special paint and ink systems which change colour depending on the angle at which the paint is viewed, reflection reducing coatings on lenses and high transmission photonic fibre optics.

Another example of nanotechnology having a quantum effect on light is plasmonics. Something remarkable happens, for example, if light is shone on a gold foil peppered with millions of nanoholes. It seems reasonable that only a tiny fraction of the light hitting the foil would pass through these negligible punctures, but in fact in a process known as ‘extraordinary optical transmission’ they act like funnels, channelling all the light that hits the foil through the sub-microscopic apertures. This bizarre phenomenon results from the interaction between the light and plasmons, waves in the two dimensional ocean of electrons in the metal.

The potential applications of plasmonics are remarkable. Not only the more obvious optical ones – near perfect lenses and supplementing the photonic lattices in superfast computers that use light rather than electrons to function – but also in the medical sphere to support diagnostics, by detecting particular molecules, and for drug delivery. Naomi Halas of Rice University in Texas envisions implanting tiny cylinders containing billions of plasmonic spheres, each carrying a minuscule dose of insulin. Infra red light, shone from outside the body, could trigger an exact release of the required dose. ‘Basically, people could wear a pancreas on their arm,’ said Halas.

Over the last seven weeks since the first post, we have explored a wide range of the ways that nanotechnology, given a push in the right direction by nature, is starting to be important in our lives. At the moment we are most likely to come across relatively simple applications like the nanoparticles in sun block or technology making fabrics and electronics water repellent.

As our abilities to construct nanostructures improve we will see increased use of the likes of carbon nanotubes and the nano-optics described in this piece. And eventually? It is entirely possible that we will see Richard Feynman’s 1950s speculation about nanomachines come to fruition, though they are likely to be more like the ‘wet’ machines of nature than a traditional mechanical device.

When nanotechnology appears in the news it is often in a negative light. We might hear that Prince Charles is worrying about the threat of grey goo, or the Soil Association won’t allow artificial nanoparticles in organic products. But the reality is very different. Nanotechnology is both fascinating and immensely valuable in its applications. I, for one, can’t wait to see what comes next.

This series has been sponsored by P2i, a British company that specializes in producing nanoscale water repellent coatings. P2i was founded in 2004 to bring technologies developed at the UK Government’s Defence Science & Technology Laboratory to the commercial market. Applications range from the Aridion coating, applied to mobile technology inside and out after manufacture using a plasma, to protection for filtration media preventing clogging and coatings for trainers that reduce water absorption.

Image from Wikipedia

Comments

Popular posts from this blog

Why I hate opera

If I'm honest, the title of this post is an exaggeration to make a point. I don't really hate opera. There are a couple of operas - notably Monteverdi's Incoranazione di Poppea and Purcell's Dido & Aeneas - that I quite like. But what I do find truly sickening is the reverence with which opera is treated, as if it were some particularly great art form. Nowhere was this more obvious than in ITV's recent gut-wrenchingly awful series Pop Star to Opera Star , where the likes of Alan Tichmarsh treated the real opera singers as if they were fragile pieces on Antiques Roadshow, and the music as if it were a gift of the gods. In my opinion - and I know not everyone agrees - opera is: Mediocre music Melodramatic plots Amateurishly hammy acting A forced and unpleasant singing style Ridiculously over-supported by public funds I won't even bother to go into any detail on the plots and the acting - this is just self-evident. But the other aspects need some ex

Is 5x3 the same as 3x5?

The Internet has gone mildly bonkers over a child in America who was marked down in a test because when asked to work out 5x3 by repeated addition he/she used 5+5+5 instead of 3+3+3+3+3. Those who support the teacher say that 5x3 means 'five lots of 3' where the complainants say that 'times' is commutative (reversible) so the distinction is meaningless as 5x3 and 3x5 are indistinguishable. It's certainly true that not all mathematical operations are commutative. I think we are all comfortable that 5-3 is not the same as 3-5.  However. This not true of multiplication (of numbers). And so if there is to be any distinction, it has to be in the use of English to interpret the 'x' sign. Unfortunately, even here there is no logical way of coming up with a definitive answer. I suspect most primary school teachers would expands 'times' as 'lots of' as mentioned above. So we get 5 x 3 as '5 lots of 3'. Unfortunately that only wor

Which idiot came up with percentage-based gradient signs

Rant warning: the contents of this post could sound like something produced by UKIP. I wish to make it clear that I do not in any way support or endorse that political party. In fact it gives me the creeps. Once upon a time, the signs for a steep hill on British roads displayed the gradient in a simple, easy-to-understand form. If the hill went up, say, one yard for every three yards forward it said '1 in 3'. Then some bureaucrat came along and decided that it would be a good idea to state the slope as a percentage. So now the sign for (say) a 1 in 10 slope says 10% (I think). That 'I think' is because the percentage-based slope is so unnatural. There are two ways we conventionally measure slopes. Either on X/Y coordiates (as in 1 in 4) or using degrees - say at a 15° angle. We don't measure them in percentages. It's easy to visualize a 1 in 3 slope, or a 30 degree angle. Much less obvious what a 33.333 recurring percent slope is. And what's a 100% slope